
Extension of Cavallo et al.(2023) to

heterogeneous exposures to energy price shocks
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1 Introduction & literature review

Understanding recent inflation spike episodes, especially following post-Covid
energy price shocks, requires a better understanding of the dynamics of inflation
and its propagation throughout the economy. Doing so necessitates the study of
firms’ price-setting process, adaptation to input prices’ shocks and the frictions
at play in such process, which are suspected to be the source of recent inflation.
It is particularly important to understand how inflationnary pressures linked to
the rise in some prices (that of energy here) can propagate in the economy and
lead to overall price increases, and to which magnitude. Therefore, analysing
the pass-through of such energy price shocks into the economy (and overall
inflation) should help us understand the link between those two, and to what
extent one was linked to the other.

A great range of models exist to take into account the frictions faced by firms
when they try to adjust their prices (nominal rigidities). However they can be
mostly organized in two separate categories, nesting from two different traditions
: the time-dependent models on one hand, and the state-dependent models on
the other. First, time-dependent models, such as the well-known Calvo, are
based upon the idea that price adjustments possibilities arise only from time
to time, and this frequency of ”adjustment window” is what determines the
frequency and size of price adjustments. In the famous Calvo model for instance,
at each period there is a probability λ that a firm adjusts price, which is constant
and does not depend on past shocks. These are usually very tractable models
and are thus widely used in the macro literature. Furthermore, they fit the data
quite well in low-inflation contexts. The issue arises when the economy is faced
with large shocks and inflation spikes. In that case, these models do not take
into account the size of the shock and thus the plausibility of an increase of
price adjustments in the economy.

State-Dependent Models That is what the family of state-dependent mod-
els aims to address, by focusing, as their name indicates, on the state of a firm
at each period of time. Generally in those models adjusting prices is costly,
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so the firms that adjust their price are those for whom the adjustment is most
profitable. As a result, it appears that the probability of adjusting its price is
completely dependent on the state of the firm (how far it is from its optimal
markup). The underlying concept in a lot of these models is that of menu costs,
precisely those costs that firms have to pay in order to be able to re-price.

As an illustration, Costain and Nakov (2011) introduce Generalized State-
dependent Pricing (SDP), where the probability that a firm adjusts its prices is
a non-decreasing function of the net value of adjusting (whether it is profitable
or not). The two extreme cases are :

- If this probability is constant : The model is then akin to a Calvo model
- If the probability is either 0 (when value of adjusting is negative) or 1

(when the value of adjusting is positive) : It is a Golosov and Lucas’ (2008)
type menu cost model
Between those two extreme cases existing a wide range of state-dependent mod-
els, with different degrees of state-dependency.

The ”pure menu cost” models of the type of Golosov & Lucas (2008), rely
on the existence of a fix real cost of adjustment (menu cost k), that is often
presented as a number of hours of labor needed to change price. Therefore,
firms reprice if they are too far from their optimal price, and the inaction region
is where, considering menu cost k, you are too close to the optimal price to want
to reprice.

Nuances of SDP models Nevertheless, this only corresponds to a bench-
mark pure menu cost model, and a lot of more flexible SD models exist. One of
the reason for relaxing some of Golosov & Lucas assumptions is that their model
do not fit the small price adjustments that are observed in the data (Midrigan
(2011)). Indeed, in the case of a fix menu cost, there is no reason why a firm
would do very small price adjustments. That is why some decided to relax this
assumption of purely fix menu cost, with the introduction of randomness in the
size of the menu cost being iid from a period to another (Dotsey, King, Wol-
man (1999), Burstein (2006)). Nakamura and Steinsson (2010) also proposed a
Calvo-Plus model, where menu costs can be either high or low, with some fix
probability λ (hence the mention to Calvo). This adds randomness, and the
possibility of small adjustments in the event of low menu costs. This model
was, for instance, used by Gautier & Le Bihan (2022) in their analysis of price
rigidity and monetary policy and a multisector model, with the specification of
a low menu cost = 0.

Another way to relax some of the assumptions of strict menu cost models,
is to look at a (series of) seminal paper by Caballero, Engel (1993), where the
probability that a firm adjusts its price depends on the sign and the magnitude
of the deviation of the price from its target level. They insist that there is no
independence between the deviation from the target price and the probability
of an adjustement (unlike in Calvo). Nevertheless, the way they get to it is
not the same as in Golosov & Lucas who assume the highest degree of state-
dependence. They introduce what they call an adjustment hazard function (Λ).
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It is a flexible function describing the probability of individual price adjustment
as a function of the magnitude of the deviation from optimal.

This is what was taken as a model, developed and refreshed by Cavallo et al.
(2023), who developed a tractable version of this model. This is the model that
will be used here as a baseline to build upon and analyse the price adjustment
dynamics in a context of marginal cost (MC) increase through an energy prices’
spike.

2 The model’s economy

Let us first describe the model’s framework and solve for the problems and
constraints faced by the different actors and sectors of this economy, first under
flex price, and then including rigidities.

2.1 Assumptions

2.1.1 Households

In this economy, households consume a composite good C made of a unit mass
of varieties ci with a constant elasticity of substitution η > 1

Ct =

(∫
(Aitcit)

η−1
η di

) η
η−1

The household problem is then to maximise utility :

max
C(t),ci(t),H(t),M(t)

∫ ∞

0

e−ρt

(
C1−ϵ

t

1− ϵ
− αHt + log

(
Mt

Pt

))
dt

where α > 0 is a labor disutility parameter and ρ > 0 is the discount factor,
subject to the inter-temporal budget constraint :

M0 +

∫ ∞

0

Qt

(
HtWt (1 + τℓ) + Πt + τt −RtMt −

∫ 1

0

pitcitdi

)
dt = 0

where Rt denotes the nominal interest rate, Qt = exp(−
∫ t

0
Rsds) is the

discount factor, Wt is the nominal wage rate, τℓ a labor income tax, Πt the
firms’ profits, τt a lump-sum transfer, pit the nominal price of variety i and P
is the price index.

2.1.2 Firms

This economy is populated by a unit mass of firms, indexed by i ∈ [0, 1]. A
good ci is produced by a firm i using labour hi, firm-specific productivity Zi and

energy mi as inputs, subject to the production technology yi =
(

hi

Zi

)1−ξi
mξi

i .
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ξi is the energy share in production. Hence, firm i’s marginal cost is mcit =
Ki(WtZt)

(1−ξi)Eξi
t , where Et is the energy input price.

We assume that Zi(t) = exp(σzi(t)), where {zi} are standard Brownian
motions, independent across i, with standard deviation parameter σ.

2.2 Equilibrium conditions under flex price

By solving the FOC 1, we get the following nominal wage rate

Wt = eµt
α

1 + τℓ
M0(ρ+ µ)

It has a growth rate equal to µ which determines the trend inflation of the
model (µ).

The demand for firm i’s product is ci =
(
pi

P

)−η
Aη−1

i C
Under flex-price, the optimal price, maximizing current profits, is p∗it =

η
η−1mcit.

Then, the price index that would prevail under flex price is

P ∗
t =

(∫ 1

0

(
η

η − 1

mcit
Ait

)1−η

di

) 1
1−η

and the optimal aggregate consumption is

C∗
t =

(
α

(1 + τℓ)Wt
P ∗
t

)− 1
ϵ

To go further, as in CLM, let us introduce the firms’ optimal (flex-price)
market shares. We find that :

ms∗it =

(
mcit
Ait

)1−η

∫ 1

0

(
mcit
Ait

)1−η

Finally, we can write firm’s profits :

Πi = (pi −mci)
(pi
P

)−η

Aη−1
i C

2.3 Introducing nominal rigidities

Let us now introduce nominal rigidities in the model. Due to these frictions, pit
is not necessarily equal to p∗it, and such is the case for the price indices.

First, let us define the price gap xit ≡ log (pit/p
∗
it). This is the (log) devia-

tion of a firm’s price with respect to its optimal price p∗t at each period t. Note
there that the price of firm i can be expressed as pit = p∗ite

xit .

1All proofs and detailed computations to be found in the Appendix
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Price index Then, by solving the FOC, the price index is given by

P 1−η
t =

∫ 1

0

(
η

η − 1

mcite
xit

Ait

)1−η

di

The ratio of the actual price index over the optimal price index can thus be
expressed as a function of the cross-section of the price gaps x and the optimal
market shares ms∗it :

Pt

P ∗
t

=

(∫ 1

0

e(1−η)xitms∗itdi

) 1
1−η

Consumption (aggregate) The aggregate consumption is :

Ct =

(
α

(1 + τℓ)Wt

)− 1
ϵ

(P ∗
t )

1
ϵ

(∫ 1

0

ms∗ite
(1−η)xitdi

) 1
ϵ(η−1)

Which can also be written, with the price index :

Ct =

(
α

(1 + τℓ)Wt
Pt

)− 1
ϵ

And as a result, the ratio of aggregate consumption over its optimal level
(prevailing in a flex price economy) is

Ct

C∗
t

=

(
Pt

P ∗
t

)− 1
ϵ

Firm’s profit function : As we saw, Πit = (pit −mcit)
(

pit

Pt

)−η

Aη−1
i Ct

Πit =

(
pit
mcit

− 1

)(
pit
PtAi

)−η

A−1
i Ctmcit

We can now express profit, as a function of price gap x ≡ log (pi/p
∗
i ), using

the fact that p∗it =
η

η−1mcit. Therefore,
pit

mcit
= pit

p∗
it

η
η−1 = ex−it η

η−1 This gives :

Π(xit, t)

Pt
=

[
exit − η − 1

η

]
e−ηx−itms∗itC

∗
t

(∫ 1

0

e(1−η)xitms∗itdi

) 1
ϵ(η−1)

−1
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Cost function Let us define the flow cost function that represents forgone
profits due to price gap x along a transition and in steady-state as

F (x, t,ms∗it) ≡ 1− Π(x, t,ms∗it)

ΠSS(0)∫ 1

0
e(1−η)xms∗itdi = 1 in steady-state, as long as the market share of the firm

is orthogonal to the price gap x (if we consider that at steady-state all x are
not 0). Simplifying and assuming C∗

t , and ms∗it very close to their steady state
value we can get :

F (x,ms∗it) = 1− η

[
ex − η − 1

η

]
e−ηx

(∫ 1

0

e(1−η)xms∗itdi

) 1
ϵ(η−1)

−1

2.4 The firm’s price-setting problem.

Let us now consider the firm’s price-setting problem. In this case, we consider
a permanent shock on energy prices, and thus a permanent MC shock for firms.
This adds to the trend shift of the price gaps xit.

Trend shift of xt Following Cavallo et al., we assume that Et follows (on
average) inflation and therefore grows at the same rate as Wt, and that Zit have
a constant mean and therefore are expected to grow at constant rate 0. The
trend shift of xt is then :

xt = log(pt)− log(p∗t )

∆x = xt+1 − xt = log(p∗t )− log(p∗t+1)

in the absence of adjustment

∆x = log(mcit)− log(mci,t+1)

∆x = log

(
KiZitWt

(
Et

ZitWt

)ξi
)

− log

(
KiZi,t+1Wt+1

(
Et+1

Zi,t+1Wt+1

)ξi
)

Assuming Et follows (on average) inflation and therefore grows at the same
rate as Wt, and that Zit have a constant mean and therefore are expected to

grow at constant rate 0, the term
(

Et+1

Zi,t+1Wt+1

)
is then constant. Therefore, the

drift in x is just driven by the growth rate of W and Z :

∆x = log

(
Zit

Zi,t+1

)
+ log

(
Wt

Wt+1

)
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dxt = −µdt+ σdzi(t)

where zi is a standard Brownian motion describing productivity shocks and µ
is the growth rate of nominal wages per unit of time, i.e. the inflation rate.

Price-setting problem The firm’s sequential problem consists in minimizing
the flow costs from forgone profits and effort costs by choosing hazard rates ℓt
and the optimal reset point x∗ according to

v(x) = min
ℓt,x∗

E

{∫ ∞

0

e−ρt [F (xt) + (κℓγt ] dt | x(0) = x

}
s.t. xt = x0 − µt+ σzt +

∑
τi<t

∆x(τi)

where τi denotes the stopping times when a resetting opportunity arrives,
∆x(τi) = x∗−xτi is the price change conditional on an adjustment. Indeed, each
time a firm adjusts its price it goes back to the optimal price gap x∗, therefore
the size of the adjustment is ∆x = x∗ − x. Therefore, xt depends on the initial
x0, its ’trend shift’ (−µt+ σzt) and the additional price (gap) changes that are
done, at each stopping time τi of adjustment. Finally, (κℓt)

γ is the effort cost
of choosing hazard rate ℓ, with κ > 0 and γ > 1

Note that for a given firm the permanent shock on energy prices will only
affect x0, shifting it and therefore affecting the initial condition of the firm’s
problem, without modifying the trend shift induced by inflation and productiv-
ity shocks. This will be treated in the next section.

3 Solution to the firm’s price-setting problem
and dynamics of the model

As shown by Cavallo et al., at a second-order Taylor approximation around the
steady state implied by the sequential formuation of the price setting problem,
the firm’s value function v(x) solves the following problem :

ρv(x) = F (x)− µv′(x) +
σ2

2
v′′(x) + min

ℓ≥0
{ℓ · (v (x∗)− v(x)) + (κℓ)γ}

where x∗ is the optimal price gap that is chosen in case of adjustment, satisfying
v′(x∗) = 0.

Then, minimizing the right hand-side optimization program, we get an op-
timal adjustment effort ℓ∗ for each x, satisfying :

(v (x∗)− v(x)) + κγ (κℓ∗)
γ−1

= 0
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(κℓ∗)
γ−1

=
v(x)− v (x∗)

κγ

ℓ∗ =
1

κ

(
v(x)− v (x∗)

κγ

) 1
γ−1

Hence, we can write Λ(x) = ℓ∗ the price adjustment probability (per unit of
time) at any given x. This will be useful as it allows to study the dynamics of
the model. Indeed, having the distribution of price gaps x, that we call m(x, t)
and the distribution of adjustment probability Λ(x) we can compute the key
statistics we are interested in, such as the frequency of price adjustments, their
size, their dynamics after a shock, etc.

Post-shock distribution of x : At impact, a permanent MC shock shifts
all the price gaps immediately. It does so in uneven ways however, as more
exposed firms face larger shock. Contrarily to the original Cavallo et al. which
only considers an aggregate shock, here the phenomenon can be split in two :
the aggregate shock δ and the firm-specific exposure ξi. In this case, we consider
that the exposure ξi and the initial price gap xi are uncorrelated for all firms.

To make the study easier and more tractable, let us consider five quintiles
of exposure ξ. The shifts are respectively δξq, where ξq is the quintile-specific
degree of exposure. Thus we get one distribution for each quintile:

m̂q(x, 0) = m(x+ δξq)

meaning that, at impact, the shock shifts the initial distribution m(x) to a new
distribution m̂q(x, 0), a shift whose scale depends on ξq.

More generally, m̂(x, 0) is the post-shock distribution of individual xi having
all faced an idiosyncratic shock of size δξi. As the size of the idiosyncratic shock
fully depends on the firm’s exposure ξi, it may well be that two firms with the
same initial price gap x shift to two different points in the post-shock distribution
m̂(x, 0).

4 Computing the pass-through

After a shock, firms will adjust their prices optimally, setting them such that x =
x∗. As a result, at the firm level, every adjustment is optimal and corresponds
to a ’full pass-through’. Therefore, to find the overall pass-through, it should
be sufficient to look at the share of adjusting firms, at each period.

In the original Cavallo et al. we have m̂(x, t) the distribution of price gaps
x after a shock, Λ(x) is the adjustment probability at any given x. To compute
the period pass-through let us find the share of adjusting firms at t:

pt(t+ dt) =

∫
m̂(x, t)Λ(x)dt dx
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m̂(x, t) is adjusting at every period t. Λ(x)dt is therefore the adjustment
rate at a given period.

If we were to compute the total or cumulative pass-through, through the
cumulated adjustment rate, we would have :

CPT (t) =

∫ t

0

∫
m̂(x, s)Λ(x)dt dx ,

which is just the integration of all period adjustments from the shock (impact
at s = 0) until period t.

This methodology raises several issues as, due to the existence of steady-
state positive adjustment rates, there is an upward bias in the estimation of the
pass-through, which can hardly be controlled for and adressed.

This is why, simulations are also done at the firm-by-firm level, looking at
the precise date of adjustment of each of them.

4.1 Implications for the pass-through along the distribu-
tion of energy exposures and firm level analysis

Let us introduce briefly the methodology employed here, which differs from orig-
inal: the idiosyncratic impact of the shock and the firm’s response are simulated
and observed for a large number of firms replicating the model’s distribution
described before. This allows to observe the exact adjustment date s of each
firm, before to aggregate it over firms at an overall - or quintile - level. Once
this aggregate is obtained it gives us the pass-through, and its dynamics across
time. This can be done under different specifications, for instance looking at
the aggregate level as well as at the level of quintiles of energy exposure.

In these simulations, we first use homogeneous and then heterogeneous Ai

which lead to different levels of market share. In the heterogeneous case, they
are drawn, respectively :

• from a uniform distribution, uncorrelated with the x

• from two uniform distributions (one with a mean much larger than the
other), correlated with the x

We also draw heterogeneous levels of exposure ξi either by quintile (5 of
them) or then from a continuous distribution (log-normal, following the data).

5 Results and interpretation of inter-quintile ex-
posure difference

It is possible to study the difference in pass-through by quintile of exposure. To
do so, one just has to order and group the firms by quintile of exposure and ag-
gregate their individual adjustment dates to compute each quintile’s cumulative
pass-through. The main results are presented in the figures below.
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First, let us look at the period-by-period, and cumulative, rate of adjustment
(yielding the pass-through here). Following the method presented above, we
can compute the period-by-period adjustment rates for each quintile of interest.
Unsurprisingly, it appears that the firms with the higher exposure are the ones
that immediately react the most to the shock, and their pass-through is faster.
It also appears that each of them reaches a full pas-through, sooner or later.
This result qualitatively depends on the parameterization that is used in the
simulations, especially regarding the celerity of the pass-through.

To better understand the role of different parameters, and potentially pre-
pare a future calibration and estimation of the model, it may be useful to look
at the output of simulations based on different parameterization (of γ and κ) in
a comparative statics exercise.

5.1 Comparative statics

In figure 1, 2 and 3 we can see the output of simulations done for several pairs
of parameters. As Cavallo et al. had already remarked, γ is a shape parameter
that eventually determines the state-dependence of the model under study. The
higher the γ, the less state-dependent is the model, and as it tends to infinity,
the model tend to a Calvo one. On the other hand, as γ → 1, the model tends
to a pure menu cost (Golosov & Lucas, 2008). This comes from the form of the
adjustment hazard function that has been described in section 3. That is why
the celerity of the pass-through, but also its shape and its heterogeneity across
different levels of exposure, and different sizes of shock, are key moments that
should allow to calibrate and estimate the model.
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Figure 1: Pass-Through after the shock, for γ = 2.22 and κ = 0.11
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Figure 2: Pass-Through after the shock, for γ = 5 and κ = 0.15
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Figure 3: Pass-Through after the shock, for γ = 10 and κ = 0.2

12



References

Burstein, Ariel T. (2006). “Inflation and output dynamics with state-dependent
pricing decisions.” Journal of Monetary Economics 53.7, pp. 1235–1257.

Caballero, R. J. and E. M. Engel (1993). “Microeconomic rigidities and aggre-
gate price dynamics” European Economic Review 37.4, pp. 697–711.

Cavallo, Alberto, Francesco Lippi, and Ken Miyahara (2023). Large Shocks
Travel Fast. NBER Working Papers 31659. National Bureau of Economic
Research, Inc.

Costain, James and Anton Nakov (2011). “Price Adjustments in a General
Model of State-Dependent Pricing” Journal of Money, Credit and Banking
43.2-3, pp. 385–406.

Dotsey, Michael, Robert G. King, and Alexander L. Wolman (1999). “State-
Dependent Pricing and the General Equilibrium Dynamics of Money and
Output.” The Quarterly Journal of Economics 114.2, pp. 655–690.
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6 Appendix

6.1 First order conditions

(1)
Ct : e

−ρtC−ϵ
t − λQtPt = 0

(2)

cit : e
−ρt

(
A

η
η−1

it c
− 1

η

it

)
C−ϵ

t C
1
η

t − λQtpit = 0

(3)
Ht : −e−ρtα+ λQtWt(1 + τℓ) = 0

(4)

Mt : e
−ρt

1

Pt

Pt

Mt
− λQtRt = e−ρt

1

Mt
− λQtRt = 0

Combining (2)/(1) :

pit
Pt

= C
1
η

t A
η−1
η

it c
− 1

η

it

↔ cit =

(
pit
Pt

)−η

Aη−1
it Ct

6.2 Money supply and demand

Now, re-arranging (4) and differentiating with respect to time :

e−ρt

(
− Ṁt

M2
t

)
− ρe−ρt

1

Mt
= λ(QtṘt + Q̇tRt)

−e−ρt
Ṁt

M2
t

− ρe−ρt
1

Mt
= λ(QtṘt −QtR

2
t )

where Q̇t = −QtRt

Then, assume a monetary policy Mt = M0 exp(µt) (as in CLM) and simplify
:

−e−ρt
µM0 exp(µt)

M2
0 exp(2µt)

− ρe−ρt
1

M0 exp(µt)
= λQt

(
Ṙt −R2

t

)

−(µ+ ρ)

(
e−ρt

1

M0exp(µt)

)
= λQtRt

(
Ṙt

Rt
−Rt

)
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and by using (4) we are left with:

µ+ ρ = Rt −
Ṙt

Rt

which is solved by Rt = ρ+ µ, all t.

Then, replacingRt andQt = exp (−(ρ+ µ)t) in (4), we have : λ = e−ρt

M0exp(µt)Qt(ρ+µ)

λ = 1
M0(ρ+µ)

From equation (3), we can replace λ and the nominal wage rate is given by:

−e−ρtα+
1

M0(ρ+ µ)
QtWt(1 + τℓ) = 0

WtQt(1 + τℓ) = e−ρtαM0(ρ+ µ)

Wt = eµt
α

1 + τℓ
M0(ρ+ µ)

It has a a growth rate equal to µ (which is useful later, as it allows to explain
the trend inflation in the model).

Then, using cit =
(

pit

Pt

)−η

Aη−1
it Ct, and aggregating over varieties we get :

Ct =

∫ 1

0

(
Ait

(
pit
Pt

)−η

Aη−1
it Ct

) η−1
η

di


η

η−1

P−η
t =

(∫ 1

0

(
Aη−1

it p1−η
it di

)) η
η−1

P 1−η
t =

∫ 1

0

(
pit
Ait

)1−η

di

Then, let us use x = log(pt)− log(p∗t ), which can be re-arranged into
pt = p∗t e

x = η
η−1mcite

x

Then,

P 1−η
t =

∫ 1

0

(
η

η − 1

mcite
x

Ait

)1−η

di (5)

At this point, let us also introduce P ∗
t the price index that would prevail under

flex price.

P ∗
t =

(∫ 1

0

(
η

η − 1

mcit
Ait

)1−η

di

) 1
1−η
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To go further, as in CLM, let us study and introduce the firms’ optimal
(flex-price) market shares into the price index. This is done in details at
the beginning of the firms’ section

We find that ms∗it =

(
η

η−1

mcit
Ait

)1−η

∫ 1
0

(
η

η−1

mcit
Ait

)1−η

Therefore, we can re-arrange (5), and then replace using ms∗it:

P 1−η
t =

∫ 1

0

(
η

η − 1

mcit
Ait

)1−η

e(1−η)xdi

Pt =

(
St

∫ 1

0

e(1−η)xms∗itdi

) 1
1−η

Pt

P ∗
t

=

(∫ 1

0

e(1−η)xms∗itdi

) 1
1−η

6.3 Consumption (aggregate)

Now, combining (2)/(3), we get:

(Aitcit)
− 1

η Ait =
αpit

Wt(1 + τℓ)
C

ϵ− 1
η

t

Aitcit =

(
pit

WtAit

)−η (
α

1 + τℓ

)−η

C1−ϵη
t

where we can now use the same trick as for the price index,
pit = p∗ite

x = η
η−1mcite

x and be left with :

Aitcit =

(
η

η − 1

mcite
x

WtAit

)−η (
α

1 + τℓ

)−η

C1−ϵη
t

Integrating over varieties, we get :

C
η−1
η

t =

∫ 1

0

(Aitcit)
η−1
η di =

∫ 1

0

[(
η

η − 1

mcite
x

WtAit

)−η (
α

1 + τℓ

)−η

C1−ϵη
t

] η−1
η

di

C
ϵ(η−1)
t =

∫ 1

0

(
η

η − 1

mcite
x

WtAit

)1−η (
α

1 + τℓ

)1−η

di

Now we can use ms∗it =

(
η

η−1

mcit
Ait

)1−η

∫ 1
0

(
η

η−1

mcit
Ait

)1−η and replace in the expression for Ct :
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C
ϵ(η−1)
t =

(
α

(1 + τℓ)Wt

)1−η ∫ 1

0

(ms∗itSt) e
(1−η)xdi

Ct =

(
α

(1 + τℓ)Wt

)− 1
ϵ
(
St

∫ 1

0

ms∗ite
(1−η)xdi

) 1
ϵ(η−1)

Which can also be written with the price index :

Ct =

(
α

(1 + τℓ)Wt
Pt

)− 1
ϵ

And in the same way, C∗
t =

(
α

(1+τℓ)Wt
P ∗
t

)− 1
ϵ

7 Firms

7.1 Firm’s market share

Let us derive a firm’s market share msi =
citpit

CtPt
:

By definition, Ct =
(∫ 1

0
(Aitcit)

η−1
η di

) η
η−1

. Then, we now know that

cit =
(

pit

Pt

)−η

Aη−1
it Ct and Pt =

(∫ 1

0

(
pit

Ait

)(1−η)
) 1

1−η

, therefore :

msi =
citpit(∫ 1

0
(Ait

(
pit

Pt

)−η

Aη−1
it Ct)

η−1
η di

) η
η−1

Pt

msi =
citpit

CtP
η
t

(∫ 1

0
(Aη−1

it p1−η
it di

) η
η−1

Pt

msi =

(
pit

Pt

)−η

Aη−1
it Ctpit

CtP
η
t P

−η
t Pt

msi =

(
pitA

−1
it

)1−η∫ 1

0

(
pitA

−1
it

)1−η
di

Let us now solve for the optimal market share, under flex price, where the
optimal price p∗ = η

η−1mc :

ms∗i =

(
η

η−1mciA
−1
i

)1−η

∫ 1

0

(
η

η−1mciA
−1
i

)1−η
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Let St ≡
∫ 1

0

(
η

η−1mciA
−1
i

)1−η

di

Finally, introducing t in the market share

ms∗it =

(
η

η−1
mci
Ai

)1−η

St

Notice that St = (P ∗
t )

1−η. Furthermore, the market share can now be
re-written as a function of the price gap x, the optimal market share ms∗it and
the price indices:

msi =

(
pitA

−1
it

)1−η

P 1−η
t

=

((
pitA

−1
it

)
P ∗
t

P ∗
t

Pt

)1−η

msi =

(
η

η−1mciA
−1
i ex

)1−η

St

(
P ∗
t

Pt

)1−η

msi = ms∗i e
(1−η)x

(
P ∗
t

Pt

)1−η

Finally we can introduce y ≡ log(ms)− log(ms∗), the (log-)deviation of the
market share from optimal

y = log(ms∗) + log(e(1−η)x) + (1− η)log

(
Pt

P ∗
t

)
− log(ms∗)

y = (1− η)x+ (1− η)log

(
Pt

P ∗
t

)

7.2 Firm’s profit function

We can now express profit, as a function of price gap x ≡ log (pi/p
∗
i ), and

using the fact that p∗it =
η

η−1mcit. Therefore,
pi

mci
= pi

p∗
i

η
η−1 = ex η

η−1 This gives
us:

Π(x, t) =

(
pit
mcit

− 1

)(
η

η − 1
ex
)−η (

mcit
Ait

)1−η

P η
t Ct

Π(x, t) =

[
ex

η

η − 1
− 1

]
e−ηxms∗itSt

η − 1

η
P η
t Ct

Π(x, t)

Pt
=

[
ex − η − 1

η

]
e−ηxms∗it

(
Pt

P ∗
t

)η−1

C∗
t

(
Ct

C∗
t

)
Let us rewrite and simplify

(
Pt

P∗
t

)η−1
Ct

C∗
t
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=

(
Pt

P ∗
t

)η−1(
αPt

(1 + τℓ)Wt

(1 + τℓ)Wt

αP ∗
t

)− 1
ϵ

=

(
Pt

P ∗
t

)η−1− 1
ϵ

=

(∫ 1

0

e(1−η)xms∗itdi

)( 1
1−η )(

ϵ(η−1)−1
ϵ )

=

(∫ 1

0

e(1−η)xms∗itdi

) 1
ϵ(η−1)

−1

We are thus left with :

Π(x, t)

Pt
=

[
ex − η − 1

η

]
e−ηxms∗itC

∗
t

(∫ 1

0

e(1−η)xms∗itdi

) 1
ϵ(η−1)

−1

Remark In CLM, they have the same equation for real profit. The difference
is that (1) they ”note” that all time dependent terms (Pt, Ct, mct) can be
derived from the distribution of x while it is not exactly the case here, since all
these terms depend also on the (optimal) market share, which is firm-specific
and not fully summarized by the distribution of x. We could write Π(x, t,msi),
to make clear that Profit is a function of the price gap, time and the market
share. (2) They notice that ”the assumption Ai = Z1−ξi

i makes the profit
function independent of the productivity shock, a feature that allows us to
reduce the state space of the problem to a single scalar variable x.”
This simplification has not been done there, hence the apparition of market
shares in the expression for real profit.

7.3 Steady-state adjustments and upward bias of the
pass-through after a shock

In steady state, let us remind that x shifts as follows : dx(t) = −µdt+ σdzi(t)
Therefore, at each period, due to trend inflation and to idiosyncratic
productivity shocks, some firms are drifting far away from their optimal price
gap x∗ and therefore set a high repricing effort. As a result, at each period,
there are some price adjustments. This is the case even in a zero-inflation
steady-state, where the overall mean adjustment is null (because on average
firms face a mean productivity shock equal to 0), but the frequency of
adjustment is positive due to the dispersion of idiosyncratic productivity
shocks.
This raises an issue in the estimation of a post-shock pass-through. Indeed,
after a shock, an increasing number of firms adjust their prices. If we were to
follow the method proposed above, we would take the share of adjusting firms
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Figure 4: Cumulated adjustment rate after a shock

as the overall pass-through. Nonetheless, as time goes by, even after all firms
have adjusted their prices, we would get back to the steady-state situation,
where fewer but still some firms adjust at each period. Therefore, the
adjustment rate would keep increasing and exceed 100 % (see Figure 1). Even
though these adjustments would not correspond to firms adjusting their prices
to ”pass” their MC increase, and therefore not corresponding to our definition
of the pass-through of firms’ MC increase into their prices, they would be
accounted for in the same way, conducting to an upward bias of the
pass-through of the shock.

7.4 Attributing the additional pass-through to
idiosyncratic shock

To remedy this, we can try to isolate the part of the adjustment which is
attributable to the impact of the shock. This is the additional adjustment,
compared to steady state, at each period. Let us write it properly :

∆pt(t) =

∫
m̂(x, t)Λ(x)∆s dx −

∫
mss(x)Λss(x)∆s dx

∆pt(t) =

∫
m̂(x, t)Λ(x)∆s dx − freqss∆s

where freqss is the (yearly) frequency of price adjustment, at steady state.
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Note that if we were to compute the cumulative pass-through instead of the
period-specific adjustment, we would also need to integrate over distributions
m̂(x, s) over time, for periods 0 to t.
Since Λ(x) is (approximately) constant over time, this can also be written as

∆pt(t) =

∫
(m̂(x, t)−mss(x)) Λ(x)∆s dx

It is apparent here that the shift in the distribution of x at period 0 (m̂(x, 0))
following the energy price shock, is the source of the difference in
pass-through, as it shifts the x further away from the optimal x∗, in regions
where the adjustment probability given by Λ(x) is higher.

7.5 Issues raised by this method

The main issue with this way of thinking of the pass-through, is that it tends
to bias the estimation of the PT downward. Indeed, say that the steady-state
adjustment rate is 2%, and the adjustment after a shock is 10%. It seems clear
that the 8 ppts gap is attributable to the shock, and can therefore be seen as a
full pass-through of these firms. Nevertheless, it seems very strange and makes
no sense to think that the 2% of firms that would have adjusted anyway, are
not passing 100% of the price increase, and therefore should indeed not be
accounted for in the pass-through.
These firms would have adjusted anyway, and the next time they will do so
will be completely independent from this shock, but the first time they adjust
after the shock, they set a price such as to reach the new (post-shock) optimal
price gap x∗. As a result, it would not be reasonable to take these adjusting
firms out of the count, and estimate a pass-through of 8% instead of 10% for
this particular period.
In general, it is possible to think that the first adjustment of a firm after a
shock will correspond to a full pass-through of the MC increase at the firm
level, and that once this shock is absorbed by this first price adjustment, the
following adjustments will only be steady-state-like adjustments. Therefore, it
appears that we need to take into account every post-shock increase in the
price adjustment rates at impact, without neutralizing them through the
removal of steady-state adjustment rates. On the other hand, in order to
capture only the adjustments related to the shock, and thus an estimation of
the pass-through, we need then to neutralize every further / later price
adjustment. In a more qualitative sense, if we are interested in the speed of
the pass-through, it may be sufficient to look at the first price adjustments,
and see the rate at which the overall cumulative pass-through reaches 100%.

Remark : Note that there is no absolute guarantee that once the cumulative
adjustment rate has reached 1, all firms have adjusted once. Indeed, it may be
that some adjusted twice or more, and some did not, which would lead to an
overestimation of the pass-through and its speed. Nevertheless we can think
that this effect is not too large.
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Figure 5: Period adjustment frequency
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